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Abstract: We calculate the ratios R
(P )
e/µ

≡ Γ(P → eν̄e[γ])/Γ(P → µν̄µ[γ]) (P = π,K) in

Chiral Perturbation Theory to order e2p4. We complement the one- and two-loop effective

theory results with a matching calculation of the local counterterm, performed within the

large-NC expansion. We find R
(π)
e/µ = (1.2352±0.0001)×10−4 and R

(K)
e/µ = (2.477±0.001)×

10−5, with uncertainty induced by the matching procedure and chiral power counting.

Given the sensitivity of upcoming new measurements, our results provide a clean baseline

to detect or constrain effects from weak-scale new physics in these rare decays. As a

by-product, we also update the theoretical analysis of the individual π(K) → ℓν̄ℓ modes.
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1. Introduction

The ratio R
(P )
e/µ ≡ Γ(P → eν̄e[γ])/Γ(P → µν̄µ[γ]) (P = π,K) of leptonic decay rates of light

pseudoscalar mesons is helicity-suppressed in the Standard Model (SM), due to the V −A

structure of charged current couplings. It is therefore a sensitive probe of all SM extensions

that induce pseudoscalar currents and non-universal corrections to the lepton couplings [1].

Recently, attention to these process has been payed in the context of the Minimal Supersym-

metric Standard Model, with [2] and without [3] lepton-flavor-violating effects. In general,

effects from weak-scale new physics are expected in the range (∆Re/µ)/Re/µ ∼ 10−4−10−2

and there is a realistic chance to detect or constrain them because of the following circum-

stances. (i) First, ongoing experimental searches plan to reach a fractional uncertainty of

(∆R
(π)
e/µ)/R

(π)
e/µ ∼< 5 × 10−4 [4] and (∆R

(K)
e/µ )/R

(K)
e/µ ∼< 3 × 10−3 [5], which represent respec-

tively a factor of 5 and 10 improvement over current errors [6]. (ii) At the same time, the

SM theoretical uncertainty can be pushed below this level, since to a first approximation

the strong interaction dynamics cancels out in the ratio Re/µ and hadronic structure depen-

dence appears only through electroweak corrections. Indeed, the most recent theoretical

predictions read R
(π)
e/µ = (1.2352±0.0005)×10−4 [7], R

(π)
e/µ = (1.2354±0.0002)×10−4 [8], and

R
(K)
e/µ = (2.472 ± 0.001) × 10−5 [8]. In ref. [7] a general parameterization of the hadronic

effects is given, with an estimate of the leading model-independent contributions based

on current algebra [9]. The dominant hadronic uncertainty is roughly estimated via di-

mensional analysis. In ref. [8], on the other hand, the hadronic component is calculated

by modeling the low- and intermediate-momentum region of the loops involving virtual

photons.

The primary goal of this investigation is to improve the current status of the hadronic

structure dependent effects. To this end, we have analyzed Re/µ within Chiral Perturbation

Theory (ChPT) [10], the low-energy effective field theory (EFT) of QCD. The key feature

of this framework is that it provides a controlled expansion of the amplitudes in terms

of the masses of pseudoscalar mesons and charged leptons (p ∼ mπ,K,ℓ/Λχ, with Λχ ∼
4πFπ ∼ 1.2GeV), and the electromagnetic coupling (e). Electromagnetic corrections to

(semi)-leptonic decays of K and π have been worked out to O(e2p2) [11, 12], but had never

been pushed to O(e2p4), as required for Re/µ in order to match the experimental accuracy.
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In this work we report full details of our analysis of Re/µ to O(e2p4), while a summary

of the results is presented elsewhere [13]. To the order we work in ChPT, Re/µ features

both model independent double chiral logarithms (previously neglected) and an a priori

unknown low-energy coupling (LEC). By including the finite loop effects and estimating

the LEC via a matching calculation in large-NC QCD, we thus provide the first complete

result of Re/µ to O(e2p4) in the EFT power counting. Most importantly, the matching

calculation allows us to further reduce the theoretical uncertainty and put it on more solid

ground.

Our presentation is organized as follows. In section 2 we introduce the basic definitions

and outline the strategy to calculate Re/µ to O(e2p4). In section 3 we shortly review

the basic ChPT formalism and the needed effective lagrangians. The loop calculation is

described in section 4 and in appendix A, and the results are reported in section 5. We then

report the matching calculation of the effective coupling in section 6, with technical details

in appendix B. We present the contribution from real photon emission in section 7, while

in section 8 we give our final analytical and numerical results for R
(π,K)
e/µ and discuss them.

Section 9 is devoted to updating the theoretical expression for the individual π(K) → ℓν̄ℓ

rates. Finally, section 10 contains our concluding remarks. Since we are reporting here the

first ChPT calculation to order e2p4, we give several details and intermediate steps of our

analysis, both throughout the text and in the appendixes.

2. R
(π,K)
e/µ in ChPT: overview

To avoid excessive notational clutter, throughout this paper we illustrate the main argu-

ments in the case of π → ℓν decays and subsequently report any significant changes that

occur for K decays. We consider the ratio

R
(π)
e/µ =

Γ (π+ → e+νe(γ))

Γ (π+ → µ+νµ(γ))
(2.1)

to order e2p4 in Chiral Perturbation Theory (ChPT). Within ChPT the invariant ampli-

tudes 1 can be expanded in powers of the external masses and momenta (of both pseu-

doscalar mesons and leptons) and powers of the electromagnetic coupling. To leading order

in the chiral expansion one finds

T p2

ℓ = −i2GF V ∗
udF mℓ ūL(pν) v(pℓ) . (2.2)

F can be identified to lowest order with Fπ (and FK , Fη). Setting e = 0, to a given

order (p2n) in the purely ”strong” chiral expansion, the amplitude reads as above, with

the replacement F → F
(2n)
π , F

(2n)
π being the pion decay constant to order p2n. When

considering the ratio of electron-to-muon decay rates the pion decay constant drops and

one obtains the well known expression:

R
(0),(π)
e/µ =

m2
e

m2
µ

(

m2
π − m2

e

m2
π − m2

µ

)2

. (2.3)

1Intermediate steps in our analysis depend on the definition of the invariant amplitude Tℓ (ℓ = µ, e), for

which we use out〈ℓ
+(pℓ)νℓ(pν)|π+(p)〉in = (2π)4δ(4) (p − pℓ − pν) i Tℓ.

– 3 –
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Non-trivial corrections to eq. (2.3) arise only when e 6= 0, i.e. to order e2p2n in ChPT.

Lorentz invariance implies that higher order contributions are proportional to the low-

est order amplitude, and this allows one to write to O(e2p4)

Γ(π → ℓν[γ]) = Γ(0)(π → ℓν) ×
[

1 + 2Re
(

re2p2

ℓ + re2p4

ℓ

)

+ δe2p2

ℓ + δe2p4

ℓ

]

, (2.4)

where

Γ(0)(π → ℓν) =
G2

F |Vud|2F 2
π

4π
mπ m2

ℓ

(

1 − m2
ℓ

m2
π

)2

(2.5)

and

re2p2n

ℓ =
T e2p2n

ℓ

T p2

ℓ

(2.6)

δe2p2n

ℓ =
Γ(π → ℓνγ)|e2p2n

Γ(0)(π → ℓν)
(2.7)

are respectively the corrections induced by virtual and real photon effects, whose sum is

free of infrared divergences. Taking the ratio of electron and muon decay rates one obtains:

R
(π)
e/µ

= R
(0),(π)
e/µ

[

1 + ∆
(π)
e2p2 + ∆

(π)
e2p4 + . . .

]

(2.8)

∆
(π)
e2p2n = 2Re

(

re2p2n

e − re2p2n

µ

)

+
(

δe2p2n

e − δe2p2n

µ

)

(2.9)

The main feature emerging from eq. (2.9) is that only those diagrams that depend in

a non-trivial way on the lepton mass contribute to Re/µ. The diagrams leading to mℓ-

independent re2p2n

ℓ will drop when taking the difference of electron and muon amplitudes.

This observation greatly reduces the number of diagrams to be calculated in the effective

theory. All the considerations presented in this section trivially extend to the case of

leptonic decays of charged kaons (K → ℓν).

3. Electromagnetic corrections to (semi)-leptonic processes at low energy

The appropriate theoretical framework for the analysis of electromagnetic effects in semilep-

tonic kaon decays is a low-energy effective quantum field theory where the asymptotic states

consist of the pseudoscalar octet, the photon and the light leptons [11]. The corresponding

lowest-order effective Lagrangian is given by

Leff =
F 2

4
〈uµuµ + χ+〉 + e2F 4Z〈Qem

L Qem
R 〉 − 1

4
FµνFµν

+
∑

ℓ

[ℓ̄(i 6∂ + e 6A − mℓ)ℓ + νℓL i 6∂νℓL]. (3.1)

F denotes the pion decay constant in the chiral limit and in the absence of electroweak

interactions. The low energy constant Z ≃ 0.8 can be determined by mass splitting of

– 4 –
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charged and neutral pions. The symbol 〈 〉 denotes the trace in three-dimensional flavour

space, and

uµ = i[u†(∂µ − irµ)u − u(∂µ − ilµ)u†] , (3.2)

with the Goldstone modes collected in the field u:

u = exp

[

iΦ√
2F

]

Φ =









π0
√

2
+ 1√

6
η8 π+ K+

π− − π0
√

2
+ 1√

6
η8 K0

K− K̄0 − 2√
6
η8









. (3.3)

The photon field Aµ and the leptons ℓ, νℓ (ℓ = e, µ) are contained in (3.2) by adding

appropriate terms to the usual external vector and axial-vector sources vµ, aµ:

lµ = vµ − aµ − eQem
L Aµ +

∑

ℓ

(ℓ̄γµνℓLQw
L + νℓLγµℓQw†

L ),

rµ = vµ + aµ − eQem
R Aµ. (3.4)

The 3 × 3 matrices Qem
L,R, Qw

L are spurion fields. At the end, one identifies Qem
L,R with the

quark charge matrix

Qem =







2/3 0 0

0 −1/3 0

0 0 −1/3






, (3.5)

whereas the weak spurion is taken at

Qw
L = −2

√
2 GF







0 Vud Vus

0 0 0

0 0 0






, (3.6)

where GF is the Fermi coupling constant and Vud, Vus are Cabibbo-Kobayashi-Maskawa

matrix elements. For the construction of the effective Lagrangian it is also convenient to

define

Qem,w
L := uQem,w

L u†, Qem
R := u†Qem

R u. (3.7)

Explicit chiral symmetry breaking is included in χ+ = u†χu†+uχ†u where χ is proportional

to the quark mass matrix:

χ = 2B0







mu 0 0

0 md 0

0 0 ms






, (3.8)

and the factor B0 is related to the quark condensate in the chiral limit by 〈0|qq|0〉 = −F 2B0.

The local action at next-to-leading order involves the sum of three terms, Lp4 +Lstr
e2p2 +

Llept
e2p2. The first one, Lp4 includes the well-known Gasser-Leutwyler Lagrangian [14] in the

presence of the generalized external sources introduced in (3.4), as well as a term from the

Wess-Zumino-Witten functional that incorporates the effect of chiral anomalies [15]. Here

we quote only the operators relevant to our analysis:

Lp4 ⊃ −iL9 〈fµν
+ uµuν〉 +

L10

4
〈f+µνfµν

+ − f−µνf
µν
− 〉

− iNC

48π2
εµναβ〈ΣL

µU †∂νrαUℓβ − ΣR
µ U∂νℓαU †rβ + ΣL

µℓν∂αℓβ + ΣL
µ∂νℓαℓβ〉 (3.9)

– 5 –
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1
2ze2

ℓ ×

(a) (b) (c)

Figure 1: Diagrams contributing to Re/µ to order e2p2. Dashed lines indicate pseudoscalar mesons,

solid lines leptons, and wavy lines photons.

with

fµν
± = uFµν

L u† ± u†Fµν
R u,

Fµν
L = ∂µlν − ∂ν lµ − i[lµ, lν ],

Fµν
R = ∂µrν − ∂νrµ − i[rµ, rν ],

U = u2,

ΣL
µ = U †∂µU,

ΣR
µ = U∂µU †. (3.10)

The second term, Lsrt
e2p2 , encodes the interaction of ultraviolet (UV) virtual photons with

hadronic degrees of freedom [16 – 18]. It contributes to the individual P → eν and P → µν,

but leads to an mℓ-independent re2p2

ℓ so that it has no effect on Re/µ. The same argument

applies to Llept
e2p2, which involves leptonic bilinears. Similarly, when inserted in one-loop

purely mesonic graphs, these effective operators contribute to P → eν and P → µν to

order e2p4, but their contribution cancels in Re/µ. Therefore, there is no need to report

the full expression of these effective lagrangians here.

Finally, we shall see that a counterterm of O(e2p4) is needed in order to make Re/µ

finite to O(e2p4). While we have not constructed the most general Llept
e2p4, on the basis

of power counting we can conclude that the same combination of operators (and LECs)

contributes to both R
(K)
e/µ and R

(π)
e/µ. This fact is also explicitly borne out in the matching

calculation that we perform in section 6.

4. Virtual-photon corrections: analysis

We work in Feynman gauge, use dimensional regularization to deal with ultraviolet (UV)

divergences and an infinitesimal photon mass to deal with infrared (IR) divergences. We

report the diagrams contributing to Re/µ to O(e2p2) and O(e2p4) in figure 1 and figures 2–

3, respectively. At the order we work, we need the charged lepton and pseudoscalar meson

wavefunction renormalizations to one-loop accuracy. We denote them by Zℓ = 1 + ze2

ℓ

(charged lepton) and Zπ = 1 + zp2

π + ze2

π (pseudoscalar meson).

– 6 –
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(IV )

(III)

(II)

(I)

Figure 2: 1PI diagrams contributing to Re/µ to order e2p4. Shaded squares indicate vertices from

the O(p4) effective lagrangian.

To order e2p2 one has to consider only two 1PI diagrams and the effect of charged

lepton wave-function renormalization (see figure 1). The resulting amplitude T e2p2

ℓ [11]

coincides with the point-like approximation of ref. [19]. Since this is well known, we do not

dwell further on it, but we will simply report the result in the next section. The situation

is more interesting to next-to-leading order.

4.1 Organizing the O(e2p4) diagrams

To O(e2p4) one has to consider (i) two-loop graphs with vertices from the lowest order ef-

fective lagrangian and (ii) one-loop graphs with one insertion from the NLO lagrangian Lp4

(we denote the latter vertices with shaded squares); (iii) a tree level diagram with insertion

of a local operator of O(e2p4). In figure 2 we report all relevant 1PI topologies: each O(p4)

vertex receives contributions from several O(p4) operators and all allowed mesons run in

the internal loops. External leg corrections are depicted in figure 3.

The self-energy insertion on the internal mesonic leg (class (IV ) in figure 2) is han-

dled by observing that to O(p4) the self-energy reads Σ(p2) = A + Bp2 (with A and B

momentum-independent) and therefore

i

p2 − m2
0

(

−iΣ(p2)
) i

p2 − m2
0

= (Z − 1)
i

p2 − m2
+ (m2 − m2

0)
∂

∂m2
0

i

p2 − m2
0

, (4.1)

– 7 –
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(1
2ze2

ℓ × + )

(1
2zp2

π × + )

1
4zp2

π ze2

ℓ ×

Figure 3: External leg corrections to Re/µ to order e2p4.

where Z represents the on-shell wave-function renormalization, m0 is the O(p2) mass and

m is the physical O(p4) mass. With this result at hand, by re-grouping the diagrams of

class (IV ) and external leg corrections with those of classes (I), (II), and (III), it is

straightforward to show that the inclusion of virtual corrections to O(e2p4) amounts to:

• using the physical O(p4) meson mass in the amplitude of O(e2p2);

• calculating a set of ”effective” one-loop diagrams with vertices given by appropri-

ate off-shell form factors evaluated to O(p4) in d-dimensions. These effective one-

loop diagrams are shown in figure 4. The shaded circles denote respectively: the

d-dimensional O(p4) πℓν vertex (figure 4(a) and (d), with off-shell pion and charged

lepton in figure 4(a)); the d-dimensional O(p4) ππγ vertex with the photon and one

pion off-shell (figure 4(b)); the d-dimensional O(p4) πℓνγ vertex with the photon and

charged lepton off-shell (figure 4 (c)).

Within this approach one starts the calculation of genuine two-loop diagrams at a stage

where the one-loop sub-divergences (generating non-local singularities) have already been

subtracted. As we shall see, another advantage is that the non-local O(p4) vertices admit

a simple dispersive parameterization that greatly simplifies the calculation.

As seen from figure 4, the virtual photon contributions can be divided into 1PI and

external leg corrections. For the external leg corrections we find:

T e2p4

ℓ

∣

∣

∣

non−1PI
=

1

2
ze2

ℓ

(

F
(4)
π

F
− 1

)

× T p2

ℓ , (4.2)

where F
(4)
π /F has to be evaluated in d-dimensions. The 1PI contribution can be written

– 8 –
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as the sum of the mass-renormalization in T e2p2

ℓ and a convolution:

T e2p4

ℓ

∣

∣

∣

1PI
= 2GF V ∗

ude
2F

∫

ddq

(2π)d

ūL(pν)γ
ν
[

−(/pℓ
− /q) + mℓ

]

γµv(pℓ)

[q2 − 2q · pℓ + iǫ]
[

q2 − m2
γ + iǫ

] T V −A
µν (p, q)

+
(

m2
π

∣

∣

p4 − m2
π

∣

∣

p2

) ∂

∂m2
π

T e2p2

ℓ , (4.3)

where

T V −A
µν =

1√
2F

∫

dx eiqx+iWy 〈0|T (JEM
µ (x) (Vν − Aν)(y)|π+(p)〉 , (4.4)

with Vµ(Aµ) = ūγµ(γ5)d and W = p − q. Lorentz invariance and Ward identities imply

that T V −A
µν in turn can be decomposed as follows (see also [20]): 2

(

T V −A
)µν

(p, q) = iV1 ǫµναβqαpβ +

[

(2p − q)µ(p − q)ν

2p · q − q2
+ gµν

]

(

F
(4)
π

F
− 1

)

−A1 (q · pgµν − pµqν) − (A2 − A1)
(

q2gµν − qµqν
)

+

[

(2p − q)µ(p − q)ν

2p · q − q2
− qµ(p − q)ν

q2

]

(

F ππ
V (q2) − 1

)

−A3

[

q · p (qµpν − qµqν) + q2 (pµqν − pµpν)
]

(4.5)

The form factors V1, Ai depend in general on both q2 and W 2 = (p − q)2 and have to be

evaluated to O(p4) in ChPT in d-dimensions 3. The same applies to the pion form factor

F ππ
V (q2) and decay constant Fπ. The convolution integral generates a term proportional

to T e2p2

ℓ |1PI as well as terms induced by V1, A1,2, and F ππ
V − 1. With obvious notation we

can write

T e2p4

ℓ

∣

∣

∣

1PI
= TV1 + TA1 + TA2 + TFV

+

(

F
(4)
π

F
− 1

)

T e2p2

ℓ

∣

∣

∣

1PI
+

(

m2
π

∣

∣

p4 − m2
π

∣

∣

p2

) ∂

∂m2
π

T e2p2

ℓ . (4.6)

Combining eqs. (4.6) and (4.2) we then obtain:

T e2p4

ℓ = TV1 + TA1 + TA2 + TFV
+

(

F
(4)
π

F
− 1

)

T e2p2

ℓ +
(

m2
π

∣

∣

p4 − m2
π

∣

∣

p2

) ∂

∂m2
π

T e2p2

ℓ (4.7)

The effect of the the last two terms in eq. (4.7) is taken into account by simply using the

physical pion mass and decay constant to O(p4) in T e2p2

ℓ . The remaining terms provide a

genuine shift to the invariant amplitude. In order to calculate such a shift, we need to:

(i) Work out the relevant form factors V1, A1,2, F
ππ
V to O(p4) (one-loop) in d-dimensions.

(ii) Insert them in the convolution representation of eq. (4.3) and calculate the resulting

integrals.

In the following subsections we report the results of these steps.

2In this work we use the convention ǫ0123 = +1 for the Levi Civita symbol.
3To O(p4) the form factor A3 vanishes.

– 9 –



J
H
E
P
1
0
(
2
0
0
7
)
0
0
5

1
2ze2

ℓ ×

(d)(c)(b)(a)

Figure 4: Effective one-loop diagrams contributing to Re/µ to order e2p4. The shaded circles

represent the O(p4) contribution to d-dimensional off-shell effective vertices.

4.2 Form factors in d-dimensions

We work in d dimension with d = 4+2w [21, 22]. The relevant form factors to O(p4) read:

V1 = − NC

24π2F 2
(4.8)

A1 = −4 (L9 + L10)

F 2
(4.9)

A2 = −2

(

F ππ
V (q2) − 1

)

q2
(4.10)

F ππ
V (q2) = 1 + 2Hππ(q2) + HKK(q2) (4.11)

The loop function Haa(q
2) [14] reads

F 2Haa(q
2) = q2

[

A(m2
a)

m2
a

d − 2

8(d − 1)
+

2

3
L9

]

+
q2 − 4m2

a

4(d − 1)
J̄aa(q2) , (4.12)

with

A(m2) ≡ −i

∫

ddk

(2π)d
1

k2 − m2 + iǫ
= − m2+2w

(4π)2+w
Γ(−1 − w) (4.13)

J̄aa(q2) = Jaa(q2) − Jaa(0) (4.14)

Jaa(q2) ≡ −i

∫

ddk

(2π)d
1

[k2 − m2
a + iǫ] [(k − q)2 − m2

a + iǫ]

=
1

(4π)2+w
Γ(−w)

∫ 1

0
dx

[

m2
a − q2 x(1 − x)

]w
(4.15)

The function Jaa(q2) admits a dispersive representation [21, 22] in d-dimensions, which

proves very useful in the evaluation of genuine two-loop contributions:

Jaa(q2) = m2w
a

∫ ∞

4m2
a

[dσ]
1

σ − q2
(4.16)

[dσ] =
dσ

(4π)2+w

Γ
(

3
2

)

Γ
(

3
2 + w

)

(

σ

4m2
a

− 1

)w (

1 − 4m2
a

σ

)1/2

(4.17)
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4.3 “Effective” one-loop diagrams

The 1PI contributions TV1 , TA1 , TA2 , TFV
can be written as the convolution of a known

kernel with the d-dimensional form factors V1, A1,2, F
ππ
V . It is simple to check that

TV1 , TA1 , TA2 , TFV
are IR finite, so we set mγ = 0. Upon inserting the O(p4) ChPT form

factors into eqs. (4.5) and (4.3), we obtain:

TV1 = T p2

ℓ e2V1
A(m2

ℓ )

2(d − 1)m2
ℓ

[

(4 + d)m2
ℓ − (d − 2)m2

π

]

(4.18)

TA1 = −T p2

ℓ e2A1
A(m2

ℓ )

4(d − 1)m2
ℓ

[

(3d2 − 6d + 4)m2
ℓ − (d − 2)2m2

π

]

(4.19)

TA2 = −2T p2

ℓ e2

{

d (2aππ + aKK)A(m2
ℓ )

+
2bππ

i

[

2I
(ℓ)ππ
2 + I

(ℓ)KK
2 − 8m2

πI
(ℓ)ππ
1 − 4m2

KI
(ℓ)KK
1

]

+
bππ

im2
ℓ

(

1 − d

2

)

[

2 (Iππ
4 − Iππ

5 ) +
(

IKK
4 − IKK

5

)

−8m2
π

(

Iππ
3 − I

(ℓ)ππ
2

)

− 4m2
K

(

IKK
3 − I

(ℓ)KK
2

) ]

}

(4.20)

TFV
= 2T p2

ℓ e2

{

(2aππ + aKK)
m2

πA(m2
π) − m2

ℓA(m2
ℓ )

m2
π − m2

ℓ

+
m2

π

m2
π − m2

ℓ

bππ

i

(

2I
(ℓ)ππ
2 + I

(ℓ)KK
2 − 8m2

πI
(ℓ)ππ
1 − 4m2

KI
(ℓ)KK
1

)

− m2
ℓ

m2
π − m2

ℓ

bππ

i

(

2I
(π)ππ
2 + I

(π)KK
2 − 8m2

πI
(π)ππ
1 − 4m2

KI
(π)KK
1

)

+(m2
π + m2

ℓ)
bππ

i

(

2T ππ
2 + TKK

2 − 8m2
πT ππ

1 − 4m2
KTKK

1

)

}

(4.21)

In the above expressions we have used the definitions:

aππ =
1

F 2

(

A(m2
π)

m2
π

d − 2

8(d − 1)
+

2

3
L9

)

(4.22)

aKK =
1

F 2

(

A(m2
K)

m2
K

d − 2

8(d − 1)
+

2

3
L9

)

(4.23)

bππ =
1

4(d − 1)F 2
(4.24)

which come from the decomposition Hmm(q2) = ammq2 + bmm(q2 − 4m2
m)J̄mm(q2). More-

over, the building-block two loop integrals are defined as follows:

I
(ℓ)aa
1 =

∫

ddq

(2π)d
J̄aa(q2)

q2 (q2 − 2q · pℓ)
(4.25)

I
(π)aa
1 =

∫

ddq

(2π)d
J̄aa(q2)

q2 (q2 − 2q · p)
(4.26)
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I
(ℓ)aa
2 =

∫

ddq

(2π)d
J̄aa(q2)

q2 − 2q · pℓ
(4.27)

I
(π)aa
2 =

∫

ddq

(2π)d
J̄aa(q2)

q2 − 2q · p (4.28)

Iaa
3 =

∫

ddq

(2π)d
J̄aa(q2)

q2
(4.29)

Iaa
4 =

∫

ddq

(2π)d
J̄aa(q2) (4.30)

Iaa
5 =

∫

ddq

(2π)d
q2 J̄aa(q2)

q2 − 2q · pℓ
(4.31)

T aa
1 =

∫

ddq

(2π)d
J̄aa(q2)

q2 (q2 − 2q · pℓ) (q2 − 2q · p)
(4.32)

T aa
2 =

∫

ddq

(2π)d
J̄aa(q2)

(q2 − 2q · pℓ) (q2 − 2q · p)
. (4.33)

The evaluation of these integrals can be done analytically and is reported in appendix A.

4.4 K decays

The procedure outlined above remains true for the analysis of K → ℓν. In the convolution

kernel one has to simply replace p → pK (p2 = m2
π → p2

K = m2
K). The form factors

V1 and A1 remain unchanged, while in A2 one has to replace F ππ
V (q2) → FKK

V (q2) =

1 + 2HKK(q2) + Hππ(q2), which again amounts to the interchange mπ ↔ mK . As a

consequence, the full result for T e2p4

ℓ (K → ℓν) can be obtained from the pion case by

interchanging everywhere mπ with mK .

5. Virtual-photon corrections: results

We collect here the results for re2p2n

ℓ = T e2p2n

ℓ /T p2

ℓ . Since Re/µ ∝ re2p2n

e −re2p2n

µ , we system-

atically neglect mℓ-independent contributions to re2p2n

ℓ that would drop in the difference.

We also introduce the notation:

zℓ ≡
(

mℓ

mπ

)2

zγ ≡
(

mγ

mπ

)2

z̃ℓ ≡
(

mℓ

mK

)2

z̃π ≡
(

mπ

mK

)2

. (5.1)

5.1 Leading order: re2p2

ℓ

The one loop virtual photon contributions read [11]:

re2p2

ℓ = − α

2π
log

√
zγ

[

1 + zℓ

1 − zℓ
log zℓ

]

+
α

4π

[

7

2
log

m2
ℓ

µ2
+ log zℓ −

2

1 − zℓ
log zℓ +

1

2

1 + zℓ

1 − zℓ
(log zℓ)

2

]

. (5.2)

Note that the dependence on the renormalization scale µ drops in Re/µ. Moreover, the

dependence on the IR regulator mγ disappears once the effect of real photon emission is

included.
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5.2 Next to leading order: re2p4

ℓ

Using the notation L̄9,10 ≡ (4π)2 Lr
9,10(µ) and ℓα = log m2

α

µ2 with α = π,K, ℓ, we find the

following expressions for the divergent and finite parts of the O(e2p4) amplitudes:

re2p4

ℓ

∣

∣

∣

V1

= e2 (µc)4w

(4π)4
1

w

8NC

9

m2
ℓ

F 2
+

α

4π
V1

[

m2
π

3
ℓℓ + m2

ℓ

(

5

9
− 4

3
ℓℓ

)]

(5.3)

re2p4

ℓ

∣

∣

∣

A1

= −e2 (µc)4w

(4π)4
1

w

28

3

(

L̄9 + L̄10

) m2
ℓ

F 2
+

α

4π
A1

[

−m2
π

3
ℓℓ + m2

ℓ

(

13

9
+

7

3
ℓℓ

)]

(5.4)

re2p4

ℓ

∣

∣

∣

A2

= e2 (µc)4w

(4π)4

[

1

w2
+

1

w

(

3

2
+ 16L̄9

)]

m2
ℓ

F 2

+
α

4π

m2
ℓ

(4πF )2

{

[

13

9
+ 8 L̄9 +

16

9

(

ℓπ +
1

2
ℓK

)

+
2

3

(

ℓ2
π +

1

2
ℓ2
K

)]

+4

(

4L̄9 −
1

6
− 1

3
ℓπ − 1

6
ℓK

)

ℓℓ −
8

9
log(zℓ

√

z̃ℓ) + f1(zℓ) +
1

2
f1(z̃ℓ)

}

(5.5)

re2p4

ℓ

∣

∣

∣

FV

= −e2 (µc)4w

(4π)4

[

1

4w2
+

1

w

(

5

12
+ 4L̄9

)]

m2
ℓ

F 2

+
α

4π

m2
ℓ

(4πF )2

{

[

−19

36
−

(

1

2
+ 4L̄9

)

ℓπ +
1

6
ℓ2
π +

1

6
ℓπℓK − 1

3
ℓK − 1

12
ℓ2
K

]

+
zℓ

1 − zℓ
log zℓ

(

4L̄9 −
1

6
− 1

3
ℓπ − 1

6
ℓK

)

+ f2(zℓ) + f3(z̃ℓ, z̃π)

}

. (5.6)

In terms of the building block functions Ẽn(x), R̃n(x), T ππ(x), and TKK(x, y) defined in

appendix A (eqs. (A.11) and (A.31)–(A.33)), the finite functions f1,2,3 read:

f1(x) =
97

54
+

4

3

(

4

(

R̃0(x) +
1

6
log x

)

− R̃1(x) − 4R̃2(x) + R̃3(x)

)

+
1

3

(

−9Ẽ0(x) + 6Ẽ1(x) + 8Ẽ2(x) − 6Ẽ3(x) + Ẽ4(x)
)

(5.7)

f2(x) =
490 + 3(147 − 32π2)

108
+

1

3
T ππ(x) +

1

3

T ππ(x) − T ππ(0)

x
+ R̃2(x) − R̃0(x)

+
1

1 − x

[

x
(

R̃2(x) − R̃0(x)
)

+
1

3
x

(

Ẽ2(x) − Ẽ0(x)
)

+x

(

540 + 3(147 − 32π2)

108

)

+
1

3

(

2(Ẽ0(x) − Ẽ2(x)) + Ẽ3(x) − Ẽ1(x)
)

]

(5.8)

f3(x, y) = − 25

108
+

1

6
TKK(x, y) +

1

6

TKK(x, y) − TKK(0, y)

x/y
+

1

6
(4 − y)

(

R̃2(x) − R̃0(x)
)

+
1

3

y − 2

y − x

(

Ẽ2(y) − Ẽ0(y)
)

+
1

6

1

1 − x/y

[

Ẽ3(x) − Ẽ1(x) − Ẽ3(y) + Ẽ1(y)

+x/y (4 − y)
(

R̃2(x) − R̃0(x)
)

+ (x/y − 2)
(

Ẽ2(x) − Ẽ0(x)
)

]

(5.9)
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Note that the functions f1,2(x) and f3(x, y) are non-singular for x → 0 (corresponding to

mℓ → 0).

In order to make the O(e2p4) amplitude UV finite we introduce in the EFT a local

counterterm. By power counting such a term cannot distinguish K and π decays. Its

contribution to the amplitude is:

re2p4

ℓ

∣

∣

∣

CT
= e2 m2

ℓ

F 2

(µc)4w

(4π)4

[

d2

w2
+

d
(0)
1 + d

(L)
1 (µ)

w
+ rCT (µ)

]

(5.10)

with

d2 = −3

4
(5.11)

d
(0)
1 = −15

4
(5.12)

d
(L)
1 (µ) = −8

3
L̄9(µ) +

28

3
L̄10(µ) . (5.13)

The finite coupling rCT (µ) satisfies the following renormalization group equation:

µ
d

dµ
rCT (µ) = −

(

4 d
(0)
1 + 2 d

(L)
1 (µ)

)

. (5.14)

6. Matching

6.1 Strategy

Within ChPT, the loop calculation of T e2p4

ℓ produces an ultraviolet divergence proportional

to (α/π)m2
ℓ/(4πF )2, indicating the need to introduce a local operator of O(e2p4), with

an associated low-energy coupling. While the divergent part of the effective coupling is

fully determined by our loop calculation, in order to estimate its finite part one needs to

go beyond the low-energy effective theory and use information on the underlying QCD

dynamics.

In full generality, the O(α) virtual-photon correction to the π → ℓν amplitude is given

by a sum of contributions that share the following convolution structure:

T e2p4

ℓ

∣

∣

∣

QCD
=

∫

ddq

(2π)d
K(q, p, pe)ΠQCD(q2,W 2)

∣

∣

∣

∣

∣

e2p4

, (6.1)

where K is a known kernel, ΠQCD stands for one of the invariant form factors appearing

in eq. (4.5), and one has to expand the r.h.s. up to O(e2p4) in the chiral power counting.

In the framework of the low-energy effective theory, when calculating T e2p4

ℓ we use the

O(p4) ChPT representation for the form factors, ΠQCD → Πp4

ChPT in eq. (6.1). While this

representation is valid at scales below mρ (and generates the correct single- and double-

logs upon integration) it leads to the incorrect UV behavior of the integrand in (6.1),

which is dictated by the Operator Product Expansion (OPE) for the 〈V V P 〉 and 〈V AP 〉

– 14 –
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correlators. As anticipated, this forces the introduction of a local operator of O(e2p4)

whose finite coupling is a priori unknown, so that:

T e2p4

ℓ

∣

∣

∣

ChPT
=

∫

ddq

(2π)d
K(q, p, pe)Πp4

ChPT (q2,W 2) + T e2p4,CT
ℓ . (6.2)

The physical matching condition T e2p4

ℓ |ChPT = T e2p4

ℓ |QCD in principle allows one to de-

termine the finite part of the counterterm. From the above discussion it is evident that

the counterterm arises from the UV region in the convolution of eq. (6.1), so in order to

estimate it we need a suitable representation of the correlators which is valid for momenta

beyond the chiral regime. This poses a complex non-perturbative problem that we are not

able to solve within full QCD.

The problem becomes tractable if we work within the context of a truncated version

of large-NC QCD, in which we replace ΠQCD → ΠQCD∞
and ΠChPT → ΠChPT∞

. In this

framework we approximate the full QCD correlators by meromorphic functions, i.e. we

assume that the correlators are saturated by the exchange of a finite number of narrow

resonances (at large NC one would have an infinite number of resonances). The rele-

vant resonance couplings are fixed by requiring that the correlators obey suitable sets of

QCD short-distance constraints [23] (see discussion in the next section for an assessment

of the model-dependence). Correspondingly, in the chiral effective theory the correlators

are obtained by considering only tree-level diagrams involving Goldstone modes, with the

couplings of higher order operators (in our case L9 and L10) consistently determined by in-

tegrating out the resonance fields. In this framework we are able to perform all integrations

analytically and we determine the local coupling by the matching condition:

T e2p4,CT
ℓ =

∫

ddq

(2π)d
K(q, p, pe)ΠQCD∞

(q2,W 2)

∣

∣

∣

∣

∣

e2p4

−
∫

ddq

(2π)d
K(q, p, pe)Πp4

ChPT∞

(q2,W 2) . (6.3)

Note that since we are using the large-NC representations for the QCD and ChPT form

factors (ΠQCD∞
and Πp4

ChPT∞

), our matching procedure is going to miss corrections to

cCT
3 (µ) sub-leading in the 1/NC expansion, which are responsible for the ”double-log”

scale dependence of the counterterm.

6.2 Meromorphic approximation for the form factors

In order to implement the program described above, we need a suitable representation of

the hadronic correlator of eq. (4.5), to be used in the convolution integral of eq. (4.3). In

refs. [24 – 28] one can find analysis of the 〈V V P 〉 and 〈V AP 〉 Green Functions, describing

them in terms of simple meromorphic functions that respect the constraints imposed at

low-momentum transfer by chiral symmetry and at high momentum-transfer by the OPE.

For correlators that are order parameters of spontaneous chiral symmetry breaking, such

as 〈V V P 〉 and 〈V AP 〉, this is a sensible approximation well supported by a number of

studies [23].
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Using the LSZ reduction formula, it is simple to extract the form factors from the

correlators of refs. [26, 27]. Denoting MV and MA the masses of vector and axial-vector

meson resonances, and using W = p − q, we find:

V1(q
2,W 2) =

1

6

2(q2 − q · p) − NC M4
V

4π2F 2

(q2 − M2
V )(W 2 − M2

V )
(6.4)

A1(q
2,W 2) =

M2
V − M2

A − b2q
2 − b3W

2

(q2 − M2
V )(W 2 − M2

A)
(6.5)

A2(q
2,W 2) =

−2M2
A − d2W

2

(q2 − M2
V )(W 2 − M2

A)
(6.6)

A3(q
2,W 2) = − 2 + d2

(q2 − M2
V )(W 2 − M2

A)
(6.7)

FV (q2) =
M2

V

M2
V − q2

. (6.8)

To leading order in powers of q2 and W 2, the above results reproduce the ChPT results to

O(p4), eqs. (4.8), (4.9), (4.10), (4.11), provided one identifies the low-energy constants with

their resonance-saturated values L9 → F 2/(2M2
V ) and L10 → −F 2/4(1/M2

V + 1/M2
A), and

provided one neglects the chiral loops. Note that A3(q
2,W 2) is not relevant for our match-

ing procedure, since it starts to contribute to our amplitude to O(e2p6). The dimensionless

constants b2,3 and d2 [27] are a priori unknnown and can be fixed by imposing constraints

on the asymptotic behavior of the Green Functions. Different results exist in the literature,

corresponding to different choices of the resonance content of the meromorphic ansatz and

consequently different sets of QCD short-distance constraints. These different choices will

allow us to quantify at least in part the model-dependence of the final answer. Let us

briefly discuss the two choices:

1. The authors of refs. [25, 26] include in their hadronic ansatz for the 〈V AP 〉 corre-

lator only the lowest lying V and A resonances and after imposing short-distance

constraints they find

b2 =
1

2
, b3 = −1

2
, d2 = −1 . (6.9)

2. On the other hand, the authors of ref. [27] include also one multiplet of pseudoscalar

(P) resonances in the truncated spectrum. After imposing a larger set of short dis-

tance constraints they find

b2 = 1 , b3 = 0 , d2 = 0 . (6.10)

For the present application it is crucial to check that the vertex functions (ΓV V )abc
µν (q, p) =

∫

d4x〈0|T (V a
µ (x)V b

ν (0)|πc(p)〉 and (ΓV A)abc
µν (q, p) =

∫

d4x〈0|T (V a
µ (x)Ab

ν(0)|πc(p)〉 satisfy

the correct asymptotic behavior dictated by QCD for q → ∞. With our ansatz ΓV V

satisfies the leading and next-to-leading power behavior (O(q−1) and O(q−2)) required by

QCD. Concerning ΓAV , the ansatz of ref. [25, 26] reproduces the QCD behavior to O(q−1)

and O(q−2). On the other hand, the ansatz of ref. [27] has the correct O(q−1) behavior
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but to O(q−2) gives a result that is twice the QCD one. Due to these considerations, in

our analysis we will use choice 1. above for the 〈V AP 〉 form factors and use difference in

the results from choice 2. as an indicator of the model dependence. We will find that the

spread in result is minimal, showing that the convolution integral is dominated by low and

intermediate virtualities. This feature is quite welcome in that it makes our results more

robust.

6.3 Results

The matching calculation is straightforward but tedious. It involves (i) inserting the large-

NC form factors of in the convolution representation of eq. (4.3); (ii) reducing the resulting

integrals to scalar Passarino-Veltman functions; (iii) expanding the full result in powers

of mℓ,π/MV , up to order (m/MV )2; (iv) finally, subtracting the ChPT∞ result from the

expanded full result, thus obtaining the counterterm amplitude according to eq. (6.3). The

details of this calculation are reported in appendix B.

Using the coefficients b2,3 and d2 as determined in ref. [26], and defining zA = MA/MV ,

we find

T e2p4,CT
ℓ (µ) = T p2

ℓ

α

4π

m2
ℓ

M2
V

{

[

4

3
V1 M2

V − 7

3z2
A

− 11

3

]

log
M2

V

µ2
− 19

9
V1 M2

V

+
1

18z2
A (−1 + z2

A)2
[

−37 + 31z2
A − 17z4

A + 11z6
A

]

− 2

3z2
A (−1 + z2

A)3
[

−7 + 5z2
A + z4

A − z6
A

]

log zA

}

. (6.11)

If one uses instead the values of b2,3 and d2 from ref. [27], the counterterm amplitude is

obtained by adding to eq. (6.11) the following expression:

δT e2p4,CT
ℓ = T p2

ℓ

α

4π

m2
ℓ

M2
V

log z2
A

3(−1 + z2
A)

. (6.12)

We defer a full discussion of the implications of this result to section 8. Here we wish

to point out that our matching procedure captures in full the ”single-log” scale dependence

of the counterterm as dictated by the renormalization group. This means that the scale

dependence of eq. (6.11) cancels the bulk of the scale dependence from chiral loops, leading

to a very stable result.

7. Real-photon corrections

7.1 Radiative decay in ChPT

The amplitude for the radiative decay π+(p) → ℓ+(pℓ)ν(pν)γ(q) can be written as [20]:

T rad
ℓ = i 2eGF FπV ∗

ud ǫ∗µ(q)
(

Bµ − Hµν lν

)

(7.1)

Bµ = mℓ ūL(pν)

[

2pµ

2p · q −
2pµ

ℓ + /qγµ

2pℓ · q

]

v(pℓ) (7.2)
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Hµν = iV1ǫ
µναβqαpβ − A1

(

q · (p − q) gµν − (p − q)µ qν
)

(7.3)

lν = ūL(pν)γνv(pℓ) , (7.4)

with the form factors V1 and A1 given to O(p4) in eqs. (4.8) and (4.9). The part of the

amplitude proportional to Bµ is referred to as ”Inner Bremsstrahlung” (IB) component,

while the part proportional to Hµν is called ”Structure Dependent” (SD) component. IB

and SD components are separately gauge invariant. The radiative decay rate has a term

coming from the IB amplitude squared, a term from the interference of IB and SD, and

finally a term proportional to the SD amplitude squared. To the order we work in the

chiral expansion, only the first two terms have to be considered in principle, and lead,

respectively, to δe2p2

ℓ and δe2p4

ℓ in the expression for Re/µ in eq. (2.9).

Introducing the dimensionless kinematical variables

x =
2p · q
m2

π

y =
2p · pℓ

m2
π

, (7.5)

the differential radiative decay rate is [20]

d2Γ(π → ℓνγ)

dx dy
=

α

2π

Γ(0)(π → ℓν)

(1 − zℓ)2

[

fIB(x, y) + m2
π

(

V1 f
(V )
INT (x, y) + A1 f

(A)
INT (x, y)

)

]

(7.6)

fIB(x, y) =
1 − y + zℓ

x2(x + y − 1 − zℓ)

[

x2 + 2(1 − x)(1 − zℓ) −
2xzℓ(1 − zℓ)

x + y − 1 − zℓ

]

(7.7)

f
(V )
INT (x, y) =

x(1 − y + zℓ)

x + y − 1 − zℓ
(7.8)

f
(A)
INT (x, y) =

1

x

(1 − y + zℓ)

x + y − 1 − zℓ

[

2zℓ − x2 + 2(1 − x)(1 − x − y)
]

. (7.9)

The total rates are obtained by integrating over the physical region

2
√

zγ ≤ x ≤ 1 − zℓ + zγ

1 − x +
zℓ

1 − x
≤ y ≤ 1 + zℓ . (7.10)

When integrating the IB component over the whole physical region, an infrared divergence

arises. It must be regulated in the same way as in the virtual corrections (in our choice

by giving an infinitesimal mass to the photon), and it will eventually disappear when one

calculates the observable inclusive rate. All integrals can be done analytically, and the

results are reported in the next section.

7.2 Results for δe2p2

ℓ , δe2p4

ℓ , and δe2p6

ℓ

The IB contribution to the radiative rate reads [19] (recall the definition of δe2p2n

ℓ in

eq. (2.7)):

δe2p2

ℓ =
α

π

{

− zℓ(10 − 7zℓ)

4(1 − zℓ)2
log zℓ +

15 − 21zℓ

8(1 − zℓ)
− 2

1 + zℓ

1 − zℓ
Li2(1 − zℓ)

+

[

2 +
1 + zℓ

1 − zℓ
log zℓ

] [

log
√

zγ − log(1 − zℓ) −
1

4
log zℓ +

3

4

]

}

, (7.11)
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where

Li2(x) = −
∫ x

0

dt

t
log(1 − t) . (7.12)

The above formula refers to the fully photon-inclusive radiative rate. If one considers only

the radiation of soft photons with ECMS
γ < ω ≪ mπ one finds, up to terms suppressed by

ω/mπ [29],

δe2p2

ℓ (ω) =
α

π

{

1 − 1 + zℓ

2(1 − zℓ)
log zℓ −

1 + zℓ

4(1 − zℓ)
log2 zℓ −

1 + zℓ

1 − zℓ
Li2(1 − zℓ)

+

[

2 +
1 + zℓ

1 − zℓ
log zℓ

]

log
mγ

2ω

}

, (7.13)

The interference between IB and SD amplitude (parameterized in terms of the form

factors V1 and A1) reads:

δe2p4

ℓ =
α

2π

m2
π

(1 − zℓ)2

{

V1

[

−17

18
+

zℓ

2
+

z2
ℓ

2
− z3

ℓ

18
− 1

3
log zℓ − zℓ log zℓ

]

+A1

[

7

9
− 2zℓ + z2

ℓ +
2 z3

ℓ

9
+

1

3
log zℓ − z2

ℓ log zℓ

]

}

. (7.14)

Classifying the various terms according to their behavior with the lepton mass, one obtains:

δe2p4

ℓ =
α

2π

(

7

9
A1 −

17

18
V1

)

m2
π +

α

2π
(A1 − V1)

m2
π

3
log zℓ

+
α

2π

(

−4

9
A1 −

25

18
V1

)

m2
ℓ +

α

2π
(2A1 − 5V1)

m2
ℓ

3
log zℓ

+
α

2π
m2

ℓ

zℓ

(1 − zℓ)2

{

− 2

3
A1

(

1 − zℓ + zℓ log zℓ

)

−1

3
V1

[

4(1 − zℓ) + (9 − 5zℓ) log zℓ

]

}

. (7.15)

Finally, we report here the purely SD contribution to the radiative rate, which is down

by one order in the chiral expansion but does not suffer from helicity suppression. We find:

δe2p6

ℓ =
α

8π
m4

π

(

V 2
1 + A2

1

)

[

1

30 zℓ
− 11

60
+

zℓ

20(1 − zℓ)2
(

12−3zℓ−10z2
ℓ +z3

ℓ +20 zℓ log zℓ

)

]

.

(7.16)

8. Phenomenology of Re/µ

We now put together all the results obtained so far. The starting point of our phenomeno-

logical analysis of R
(π,K)
e/µ is eq. (2.8), which organizes the electroweak corrections to the

leading order result of eq. (2.3) according to the chiral expansion. Incorporating the effects
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of leading higher order logs [7] of the form αn logn(mµ/me) through the correction ∆LL,

we can write eq. (2.8) as:

R
(P )
e/µ = R

(0),(P )
e/µ

[

1 + ∆
(P )
e2p2 + ∆

(P )
e2p4 + ∆

(P )
e2p6 + . . .

][

1 + ∆LL

]

(8.1)

The leading electromagnetic correction in ChPT corresponds to the point-like approx-

imation for pion and kaon [7, 11, 19]:

∆
(P )
e2p2 =

α

π

[

F

(

m2
e

m2
P

)

− F

(

m2
µ

m2
P

)]

(8.2)

F (z) =
3

2
log z +

13 − 19z

8(1 − z)
− 8 − 5z

4(1 − z)2
z log z −

(

2 +
1 + z

1 − z
log z

)

log(1 − z)

−2
1 + z

1 − z
Li2(1 − z) . (8.3)

The structure dependent effects are all contained in ∆e2p4 and higher order terms,

which are the main subject of this work. Neglecting terms of order (me/mρ)
2, the most

general parameterization of the NLO ChPT contribution can be written in the form

∆
(P )
e2p4 =

α

π

m2
µ

m2
ρ

(

c
(P )
2 log

m2
ρ

m2
µ

+ c
(P )
3 + c

(P )
4 (mµ/mP )

)

+
α

π

m2
P

m2
ρ

c̃
(P )
2 log

m2
µ

m2
e

, (8.4)

which highlights the dependence on lepton masses. The dimensionless constants c
(P )
2,3 do

not depend on the lepton mass but depend logarithmically on hadronic masses, while

c
(P )
4 (mµ/mP ) → 0 as mµ → 0. (Note that our c

(π)
2,3 do not coincide with C2,3 of ref. [7],

because their C3 is not constrained to be mℓ-independent.)

Finally, let us note that the results for c
(P )
2,3,4 and c̃

(P )
2 depend on the definition of the in-

clusive rate Γ(P → ℓν̄ℓ[γ]). The radiative amplitude is the sum of the inner bremsstrahlung

(TIB) component of O(ep) and a structure dependent (TSD) component of O(ep3) [20]. The

experimental definition of R
(π)
e/µ is fully inclusive on the radiative mode, so that ∆

(π)
e2p4 re-

ceives a contribution from the interference of TIB and TSD. Moreover, in this case one also

has to include the effect of ∆
(π)
e2p6 ∝ |TSD|2, that is formally of O(e2p6), but is not helicity

suppressed and behaves as ∆e2p6 ∼ α/π (mP /MV )4 (mP /me)
2. On the other hand, the

usual experimental definition of R
(K)
e/µ is not fully inclusive on the radiative mode. It corre-

sponds to including the effect of TIB in ∆
(K)
e2p2 (dominated by soft photons) and excluding

altogether the effect of TSD: consequently c
(π)
n 6= c

(K)
n .

8.1 Results for R
(π)
e/µ

Recalling the definitions L̄9 ≡ (4π)2Lr
9(µ), ℓP ≡ log(m2

P /µ2) (µ is the chiral renormaliza-

tion scale), γ ≡ A1(0, 0)/V1(0, 0), zℓ ≡ (mℓ/mπ)2, we find:

c
(π)
2 =

2

3
m2

ρ 〈r2〉(π)
V + 3 (1 − γ)

m2
ρ

(4πF )2
c̃
(π)
2 = 0 (8.5)

– 20 –



J
H
E
P
1
0
(
2
0
0
7
)
0
0
5

(P = π) (P = K)

c̃
(P )
2 0 (7.84 ± 0.07γ) × 10−2

c
(P )
2 5.2 ± 0.4L9 ± 0.01γ 4.3 ± 0.4L9 ± 0.01γ

c
(P )
3 −10.5 ± 2.3m ± 0.53L9 −4.73 ± 2.3m ± 0.28L9

c
(P )
4 (mµ) 1.69 ± 0.07L9 0.22 ± 0.01L9

Table 1: Numerical values for c
(P )
n of eq. (8.4), for P = π, K. The uncertainties correspond to

the input values Lr
9(µ = mρ) = (6.9 ± 0.7) × 10−3, γ = 0.465 ± 0.005 [30], and to the matching

procedure (m), affecting only c
(P )
3 .

c
(π)
3 = −

m2
ρ

(4πF )2

[

31

24
− γ + 4 L̄9 +

(

23

36
− 2 L̄9 +

1

12
ℓK

)

ℓπ +
5

12
ℓ2
π +

5

18
ℓK +

1

8
ℓ2
K

+

(

5

3
− 2

3
γ

)

log
m2

ρ

m2
π

+

(

2 + 2κ(π) − 7

3
γ

)

log
m2

ρ

µ2
+ K(π)(0)

]

+ cCT
3 (µ) (8.6)

c
(π)
4 (mℓ) = −

m2
ρ

(4πF )2

{

zℓ

3(1 − zℓ)2

[(

4(1 − zℓ) + (9 − 5zℓ) log zℓ

)

+ 2γ
(

1 − zℓ + zℓ log zℓ

)]

+

(

κ(π) +
1

3

)

zℓ

2(1 − zℓ)
log zℓ + K(π)(mℓ) − K(π)(0)

}

(8.7)

where κ(π) is related to the O(p4) pion charge radius by:

κ(π) ≡ 4 L̄9 −
1

6
ℓK − 1

3
ℓπ − 1

2
=

(4πFπ)2

3
〈r2〉(π)

V . (8.8)

In the above equations we have used the definition:

K(π)(mℓ) =
1

2

[

f1(zℓ) +
1

2
f1(z̃ℓ) + f2(zℓ) + f3(z̃ℓ, z̃π) − 8

9
log

m2
ρ

m2
π

− 4

9
log

m2
ρ

m2
K

]

. (8.9)

The function K(π)(mℓ) does not contain any large logarithms (K(π)(mµ) = −0.025 and

K(π)(0) = 0.085) and gives a small fractional contribution to c
(π)
3,4 .

Full numerical values of c
(π)
2,3,4 and c̃

(π)
2 are reported in table 1, with uncertainties due

to matching procedure and input parameters (L9 and γ [30]). We now discuss the results

obtained and make contact with the previous literature.

• We find c̃
(π)
2 = 0 in accordance to a theorem by Marciano and Sirlin [31]. This result

arises from an exact cancellation of virtual photon contributions proportional to V1

and A1 and real photon contribution due to the interference of SD and IB amplitudes.

The cancellation occurs only when the fully inclusive rate is considered.

• The coefficient c
(π)
2 is a parameter-free prediction of ChPT to this order. It involves

the O(p4) LECs L9 and L10, related to the pion charge radius and the ratio of axial-

to-vector form factors γ measurable in the radiative pion and kaon decay.
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• The coefficient c
(π)
3 receives a predictable contribution from loops in the ChPT frame-

work, as well as a local contribution that cannot be predicted in the purely EFT ap-

proach, denoted by cCT
3 (µ). Both contributions are renormalization-scale dependent,

while the sum is not. cCT
3 (µ) is related to the low energy coupling rCT (µ) introduced

in eq. (5.10) by rCT (µ) = −2(4πF )2/m2
ρ cCT

3 (µ). Our matching procedure gives for

the counterterm (zA ≡ (MA/MV ) and taking MV = mρ):

cCT
3 (µ) =−

19m2
ρ

9(4πF )2
+

(

4m2
ρ

3(4πF )2
+

7 + 11z2
A

6z2
A

)

log
m2

ρ

µ2

+
37 − 31z2

A + 17z4
A − 11z6

A

36z2
A(1 − z2

A)2
− 7 − 5z2

A − z4
A + z6

A

3z2
A(−1 + z2

A)3
log zA . (8.10)

Numerically, using zA =
√

2 [32], we find cCT
3 (mρ) = −1.61, implying that the coun-

terterm induces a sub-leading correction to c3 (see table 1). The model dependence

due to different choices of the hadronic ansatz (ref. [26] vs ref. [27]) is negligible, being

∆cCT
3 = 0.12. The scale dependence of cCT

3 (µ) partially cancels the scale dependence

of the chiral loops (our procedure captures all the ”single-log” scale dependence).

Taking a very conservative attitude we assign to c3 an uncertainty equal to 100% of

the local contribution (|∆c3| ∼ 1.6) plus the effect of residual renormalization scale

dependence, obtained by varying the scale µ in the range 0.5 → 1GeV (|∆c3| ∼ 0.7),

leading to ∆c
(π,K)
3 = ±2.3.

• Finally, the coefficient c
(π)
4 can be calculated in terms of the LEC L9 and the lepton

and meson masses and decay constants. Not surprisingly we find that this effect is

only marginally important.

As a check on our calculation, we have verified that if we neglect cCT
3 and pure two-loop

effects, and if we use L9 = F 2/(2M2
V ) (vector meson dominance), our results for c

(π)
2,3,4 are

fully consistent with previous analyses of the leading structure dependent corrections based

on current algebra [7, 9]. Moreover, our numerical value of ∆
(π)
e2p4 reported in table 2 is

very close to the corresponding result in ref. [7], namely ∆
(π)
e2p4 = (0.054± 0.044)× 10−2 [7]

versus ∆
(π)
e2p4 = (0.053 ± 0.011) × 10−2 (this work). Therefore, as far as R

(π)
e/µ is concerned,

the net effect of our calculation is a reduction of the uncertainty by a factor of four.

8.2 Results for R
(K)
e/µ

In the case of K decays we find:

c
(K)
2 =

2

3
m2

ρ 〈r2〉(K)
V +

4

3

(

1 − 7

4
γ

)

m2
ρ

(4πF )2
(8.11)

c̃
(K)
2 =

1

3
(1 − γ)

m2
ρ

(4πF )2
(8.12)
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c
(K)
3 = −

m2
ρ

(4πF )2

[

− 7

72
− 13

9
γ + 4 L̄9 +

(

23

36
−2L̄9+

1

12
ℓπ

)

ℓK +
5

12
ℓ2
K +

5

18
ℓπ +

1

8
ℓ2
π

+

(

2 + 2κ(K) − 7

3
γ

)

log
m2

ρ

µ2
+ K(K)(0)

]

+ cCT
3 (µ) (8.13)

c
(K)
4 (mℓ) = −

m2
ρ

(4πF )2

{(

κ(K) +
1

3

)

z̃ℓ

2(1 − z̃ℓ)
log z̃ℓ + K(K)(mℓ) − K(K)(0)

}

, (8.14)

where 〈r2〉(K)
V is the O(p4) kaon charge radius and

κ(K) ≡ 4 L̄9 −
1

6
ℓπ − 1

3
ℓK − 1

2
=

(4πF )2

3
〈r2〉(K)

V . (8.15)

Moreover the function K(K)(mℓ) is given by:

K(K)(mℓ) =
1

2

[

f1(z̃ℓ) +
1

2
f1(zℓ) + f2(z̃ℓ) + f3(zℓ, 1/z̃π) − 8

9
log

m2
ρ

m2
K

− 4

9
log

m2
ρ

m2
π

]

.

(8.16)

As in the pion case, the function K(K)(mℓ) does not contain any large logarithms

(K(K)(mµ) = 0.93 and K(π)(0) = 1.05) and gives a small fractional contribution to cK
3,4.

Note that apart from missing contributions from the SD radiation, the c
(K)
2,3,4 and c̃

(K)
2

are obtained from the c
(π)
2,3,4 and c̃

(π)
2 by interchanging mπ with mK everywhere (the under-

lying reason is given in section 4.4). The numerical values of c
(K)
2,3,4 and c̃

(K)
2 are reported

in table 1.

8.3 Resumming long distance logarithms

At the level of uncertainty considered, one needs to include higher order long distance

corrections [7], generalizing the leading contribution ∆e2p2 ∼ −3α/π log mµ/me ∼ −3.7%.

The leading logarithms can be summed via the renormalization group and their effect

amounts to multiplying R
(P )
e/µ by 1 + ∆LL, with [7]

1 + ∆LL =

(

1 − 2
3

α
π log

mµ

me

)9/2

1 − 3α
π log

mµ

me

= 1.00055 . (8.17)

8.4 Discussion

In table 2 we summarize the various electroweak corrections to R
(π,K)
e/µ . Applying these we

arrive to our final results:

R
(π)
e/µ

= (1.2352 ± 0.0001) × 10−4 (8.18)

R
(K)
e/µ = (2.477 ± 0.001) × 10−5 . (8.19)

The uncertainty we quote for R
(π)
e/µ is entirely induced by our matching procedure. However,

in the case of R
(K)
e/µ we have inflated the nominal uncertainty arising from matching by a
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(P = π) (P = K)

∆
(P )
e2p2 (%) −3.929 −3.786

∆
(P )
e2p4 (%) 0.053 ± 0.011 0.135 ± 0.011

∆
(P )
e2p6 (%) 0.073

∆LL (%) 0.055 0.055

Table 2: Numerical summary of various electroweak corrections to R
(π,K)
e/µ . The uncertainty in

∆e2p4 corresponds to the matching procedure.

104 · R(π)
e/µ 105 · R(K)

e/µ

This work 1.2352 ± 0.0001 2.477 ± 0.001

ref. [7] 1.2352 ± 0.0005

ref. [8] 1.2354 ± 0.0002 2.472 ± 0.001

Table 3: Comparison of our result with the most recent predictions of R
(π,K)
e/µ .

factor of four, to account for higher order chiral corrections, that are expected to scale as

∆e2p4 × m2
K/(4πF )2.

Our results have to be compared with the ones of refs. [7] and [8], which we report in

table 3. While R
(π)
e/µ is in good agreement with both previous results, there is a discrepancy

in R
(K)
e/µ that goes well outside the estimated theoretical uncertainties. We have traced back

this difference to two problematic aspects of ref. [8]. (i) The leading log correction ∆LL is

included with the wrong sign: this accounts for half of the discrepancy. (ii) The remaining

effect is due to the difference in the NLO virtual correction, for which Finkemeier finds

∆
(K)
e2p4 = 0.058%. We have serious doubts on the reliability of this number because the

hadronic form factors modeled in ref. [8] do not satisfy the correct QCD short-distance

behavior. At high momentum they fall off faster than the QCD requirement, thus leading

to a smaller value of ∆
(K)
e2p4 compared to our work.

9. The individual π(K) → ℓν̄ℓ modes

The approach followed in this work is designed to obtain the ratio of π(K) → eν̄e and

π(K) → µν̄µ decay rates, because we have neglected all the Feynman diagrams in which

the photon does not connect to the charged lepton. Including these diagrams in ChPT

would generate new finite parts and UV divergences, and the corresponding local couplings

would have to be evaluated within the 1/NC expansion described earlier. We leave this

task for possible future work.

However, despite the fact that we have not performed a full O(e2p4) calculation of

π(K) → ℓν̄ℓ, our results can still be used to update the theoretical analysis of these indi-

vidual decay modes. Here we closely follow the analysis of ref. [7]. Including all known

short- and long-distance electroweak corrections, and parameterizing the hadronic effects
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in terms of a few dimensionless coefficients, the inclusive P → ℓν̄ℓ[γ] decay rate ΓPℓ2[γ]
can

be written as:

ΓPℓ2[γ]
= Γ(0) ×

{

1+
2α

π
log

mZ

mρ

}

×
{

1+
α

π
F (m2

ℓ/m
2
P )

}

×
{

1−α

π

[

3

2
log

mρ

mP

+c
(P )
1 +

m2
ℓ

m2
ρ

(

c
(P )
2 log

m2
ρ

m2
ℓ

+c
(P )
3 +c

(P )
4 (mℓ/mP )

)

−m2
P

m2
ρ

c̃
(P )
2 log

m2
ρ

m2
ℓ

]}

, (9.1)

where Γ(0) is the rate in absence of radiative corrections (see eq. (2.5)), the first bracketed

term is the universal short distance electroweak correction, the second bracketed term is

the universal long distance correction (point-like meson), and the third bracketed term

parameterizes the effects of hadronic structure. The function F (z) and the constants c
(P )
2,3,4

(and c̃
(P )
2 ) already appear in R

(P )
e/µ and their expressions and numerical values have been

reported in the previous section. The only additional ingredient needed to predict the

individual rates ΓPℓ2[γ]
is the structure-dependent coefficient c

(P )
1 , which does not depend

on the lepton mass and starts at O(e2p2) in ChPT. The explicit form (for both P = π,K) is

given in [11] (eqs. 5.11 and 5.14) and it depends on a combination of EM LECs of O(e2p2).

These have been recently estimated in ref. [33] in the same large-NC framework adopted

here, with the final result:

c
(π)
1 = −2.56 ± 0.5 (9.2)

c
(K)
1 = −1.98 ± 0.5 . (9.3)

So at the moment all the structure dependent coefficients c
(p)
n are known to leading order

in their expansion within the chiral effective theory (which is O(e2p2) for c
(P )
1 and O(e2p4)

for the other coefficients) . The O(e2p4) contribution to c
(P )
1 has not yet been calculated

(this could be done by employing the techniques presented in this paper). On the basis of

power counting we expect c
(P )
1 |e2p4 ∼< 0.5, which is consistent with the uncertainty assigned

to c
(P )
1 [33].

Finally, we discuss here a quantity of interest in the experimental analysis of Ke2/Kµ2,

namely the K → ℓν rate with inclusion of only soft photons (ω ≪ mK):

ΓKℓ2[γ]
(ω) ≡ Γ(K → ℓν̄ℓ) + Γ(K → ℓν̄ℓγ)

∣

∣

∣

ECMS
γ <ω

. (9.4)

Using our results on the emission of soft photons (eq. (7.13)), it is simple to show

that ΓKℓ2[γ]
(ω) is given by eq. (9.1) provided one replaces F (z) → F soft(z;ω), with

(z = m2
ℓ/m

2
K):

F soft(z;ω) = −3

4
+

3

4
log z− 2 z

1−z
log z− 1 + z

1 − z
Li2(1−z)−

[

2+
1+z

1−z
log z

]

log
2ω

mK
. (9.5)

10. Conclusions

In conclusion, by performing the first ChPT calculation to O(e2p4) and a matching cal-

culation of the relevant low energy coupling, we have improved the reliability of both the
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central value and the uncertainty of the ratios R
(π,K)
e/µ . Our final result for R

(π)
e/µ is con-

sistent with the previous literature, while we find a discrepancy in R
(K)
e/µ , which we have

traced back to inconsistencies in the analysis of ref. [8]. Our results provide a clean basis

to detect or constrain non-standard physics in these modes by comparison with upcoming

experimental measurements.

As a byproduct of our main analysis, we also updated the expressions for the radia-

tive corrections to the individual π(K) → ℓν̄ℓ modes, which can be used to extract from

experiment the combinations Fπ Vud and FK Vus.

Finally, it is worth mentioning that the ideas and techniques discussed in this article

can be applied (i) to perform a full O(e2p4) analysis of the individual π(K) → ℓν̄ℓ modes;

(ii) to deal with other processes that involve one pseudo-scalar meson and a lepton pair,

such as τ → Kντ [γ]. In this case chiral effective theory techniques are not adequate, but

the calculation based on the large-NC representation for the 〈V AP 〉 and 〈V V P 〉 remains

adequate.
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A. Two-loop integrals

A.1 Procedure

In order to calculate the genuine two-loop integrals listed in section 4.3 above, we use the

d-dimensional dispersive representation of the function J̄aa(q2) [21, 22], which is easily

derived from eq. (4.17). Re-expressing all dimensionful parameters in units of ma, one

obtains:

J̄aa(q2) = −m2w
a q̄2

∫ ∞

4

[ds]

s

1

(q̄2 − s)
(A.1)

[ds] =
ds

(4π)2+w

Γ
(

3
2

)

Γ
(

3
2 + w

)

(

s

4
− 1

)w (

1 − 4

s

)1/2

, (A.2)

where q̄ = q/ma and s are dimensionless variables. Upon inserting the representation of

eq. (A.1) in the expression for Iaa
n one immediately sees that the calculation is naturally

separated in two steps: (i) a one-loop diagram involving one propagator of mass s; (ii)

integration of the result over the variable s, with measure given by [ds]/s.
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In order to exemplify the procedure, we report here the calculation of I
(ℓ)ππ
1 . The other

integrals can be worked out with similar techniques. We have found extremely useful the

results of ref. [22]. The case considered in that paper is slightly easier, because they only

have one mass scale in the loops (mπ), while we have two.

Inserting the representation of eq. (A.1) in the definition of I
(ℓ)ππ
1 , and re-expressing

all momentum variables in units of mπ, one arrives at (recall d = 4 + 2w):

I
(ℓ)ππ
1 = −m4w

π

∫ ∞

4

[ds]

s

∫

ddq

(2π)d
1

q2 − s

1

[(q − pℓ)2 − zℓ]
(A.3)

Here q and pℓ are dimensionless momentum variables (to avoid clutter we are not using

the q̄, p̄ℓ notation) and zℓ = (mℓ/mπ)2. Combining the two denominators with the usual

trick one gets:

I
(ℓ)ππ
1 = −m4w

π

∫ ∞

4

[ds]

s

∫ 1

0
dx

∫

ddq

(2π)d
1

[(q − xpℓ)2 − z(x, s)]2

= −im4w
π

∫ ∞

4

[ds]

s

∫ 1

0
dxF2[z(x, s)] (A.4)

where z(x, s) = zℓ x2 + s(1 − x) and [22]

i(−1)nFn[z] =

∫

ddq

(2π)d
1

[q2 − z]n
(A.5)

Explicitly one has

Fn[z] = C(w) zw+2−n Γ(n − 2 − w)

Γ(n)
, n ≥ 1 (A.6)

with C(w) = 1/(4π)2+w . Most of the non-trivial integrals that we need to calculate have

the structure of eq. (A.4). In order to make progress one needs to identify in eq. (A.4) the

finite part and divergent part. This is accomplished by using a set of recursion relations

that are the subject of next subsection.

A.2 Recursion relations

In close analogy with ref. [22] one can define (for m,n integers):

Ẽ(m,n; zℓ) =

∫ ∞

4

[ds]

s

∫ 1

0
dx (1 − x)m Fn[z(x, s)] (A.7)

where z(x, s) = zℓ x2 + s(1−x). If zℓ → 1 then Ẽ(m,n; zℓ) → E(m,n) defined in appendix

C of ref. [22]. By use of integration by parts in the variable x and recalling the explicit

form of Fn[z] (eq. (A.6)), one can derive the following useful recursion relation:

(3 + w + m − n) Ẽ(m,n; zℓ) =
Γ(n − 2 − w)

Γ(n)Γ(−w)
Q(w + 1 − n)

−n zℓ

(

Ẽ(m,n + 1; zℓ) − Ẽ(m + 2, n + 1; zℓ)
)

(A.8)
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with

Q(α) = C(w) Γ(−w)

∫ ∞

4
[ds] sα

= C2(w) Γ(−w) Γ(−1 − w − α)
Γ(−α)

Γ(−2α)
. (A.9)

Reassuringly, by setting zℓ = 1 one recovers the result of Gasser-Sainio [22].

Eq. (A.8) is useful because it allows one to express the integrals Ẽ(m,n ≤ 2; zℓ) in terms

of known divergent quantities (Q(α)) and the convergent integrals Ẽ(m, 3 : zℓ). Finally,

let us provide an integral representation for Ẽ(m, 3; zℓ) (obtained by setting d = 4):

zℓ Ẽ(m, 3; zℓ) =
1

2(4π)4
Ẽm(zℓ) (A.10)

Ẽm(zℓ) = zℓ

∫ ∞

4

ds

s

(

1 − 4

s

)1/2 ∫ 1

0
dx

(1 − x)m

zℓx2 + s(1 − x)

= −2

∫ 1

0
dx

(1 − x)m

x2

[

1 +
α(x)

2
log

(

α(x) − 1

α(x) + 1

)]

(A.11)

α(x) =

(

1 +
4(1 − x)

zℓ x2

)1/2

(A.12)

We have checked that the integrals above are indeed convergent, although we could not

find an analytic expression for zℓ 6= 1.

A.3 Results

We are now ready to present results for the integrals appearing in T e2p4

ℓ .

I
(ℓ)ππ
1 =

i

(4π)4

[

− m4w
π

(4π)2w

Γ(−w)Γ(−2w)Γ(1 − w)

(1 + w)Γ(2 − 2w)
+ Ẽ0(zℓ) − Ẽ2(zℓ)

]

(A.13)

I
(π)ππ
1 =

i

(4π)4

[

− m4w
π

(4π)2w

Γ(−w)Γ(−2w)Γ(1 − w)

(1 + w)Γ(2 − 2w)
−

(

2

3
π2 − 7

)]

(A.14)

I
(ℓ)ππ
2 = im2+4w

π [C(w)Γ(−w)]2
[

Γ(−1 − w)Γ(−1 − 2w)

Γ(−w)Γ(−2w)

− 2zℓ

(1 + w)(2 + w)

Γ(−2w)Γ(1 − w)

Γ(−w)Γ(2 − 2w)

]

+i
2m2

ℓ

(4π)4

[

Ẽ0(zℓ) −
1

2
Ẽ1(zℓ) − Ẽ2(zℓ) +

1

2
Ẽ3(zℓ)

]

(A.15)

I
(π)ππ
2 = im2+4w

π [C(w)Γ(−w)]2
[

Γ(−1 − w)

Γ(−w)
+

3

2
− 17

4
w +

59

8
w2

]

(A.16)

Iππ
3 = im2+4w

π [C(w)Γ(−w)]2
Γ(−1 − w)Γ(−1 − 2w)

Γ(−w)Γ(−2w)
(A.17)

Iππ
4 = im4+4w

π [C(w)Γ(−w)]2
[

Γ(−1 − w)

Γ(−w)

]2

(A.18)

Iππ
5 = Iππ

4 + i4m4+4w
π

[

zℓ
2 + w

4 + 2w
Ẽ(0, 1; zℓ)

−z2
ℓ

(

Ẽ(0, 2; zℓ) − 2Ẽ(1, 2; zℓ) + Ẽ(2, 2; zℓ)
)]

(A.19)
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T ππ
1 =

i

(4π)4
1/m2

π

zℓ − 1

∫ ∞

4

ds

s

(

1 − 4

s

)1/2

tππ
1 (s) ≡ i

(4π)4 m2
π

T̃ ππ
1 (zℓ) (A.20)

tππ
1 (s) =

∫ 1

0
dx

1

x
log

(

x2 zℓ + s(1 − x)

x2 + s(1 − x)

)

T ππ
2 = I

(ℓ)ππ
1 +

i

(4π)4

∫ ∞

4

ds

s

(

1 − 4

s

)1/2

tππ
2 (s) ≡ I

(ℓ)ππ
1 +

i

(4π)4
T̃ ππ

2 (zℓ) (A.21)

tππ
2 (s) = 1 +

1

zℓ − 1

∫ 1

0
dx

(

1 +
s

x
− s

x2

)

log

(

x2 zℓ + s(1 − x)

x2 + s(1 − x)

)

Note that tππ
1,2(s) can be expressed in terms of elementary functions and Spence functions.

The full expressions, however, are not particularly enlightening. Since tππ
1,2(s) are not sin-

gular for zℓ → 0, numerical integration is stable and sufficient for our purposes.

For the two-loop integrals involving J̄KK(q2) we find:

I
(ℓ)KK
1 =

i

(4π)4

[

− m4w
K

(4π)2w

Γ(−w)Γ(−2w)Γ(1 − w)

(1 + w)Γ(2 − 2w)
+ Ẽ0(z̃ℓ) − Ẽ2(z̃ℓ)

]

(A.22)

I
(π)KK
1 =

i

(4π)4

[

− m4w
K

(4π)2w

Γ(−w)Γ(−2w)Γ(1 − w)

(1 + w)Γ(2 − 2w)
+ Ẽ0(z̃π) − Ẽ2(z̃π)

]

(A.23)

I
(ℓ)KK
2 = im2+4w

K [C(w)Γ(−w)]2
[

Γ(−1 − w)Γ(−1 − 2w)

Γ(−w)Γ(−2w)

− 2z̃ℓ

(1 + w)(2 + w)

Γ(−2w)Γ(1 − w)

Γ(−w)Γ(2 − 2w)

]

+i
2m2

ℓ

(4π)4

[

Ẽ0(z̃ℓ) −
1

2
Ẽ1(z̃ℓ) − Ẽ2(z̃ℓ) +

1

2
Ẽ3(z̃ℓ)

]

(A.24)

I
(π)KK
2 = I

(ℓ)KK
2

∣

∣

mℓ→mπ
(A.25)

IKK
3 = im2+4w

K [C(w)Γ(−w)]2
Γ(−1 − w)Γ(−1 − 2w)

Γ(−w)Γ(−2w)
(A.26)

IKK
4 = im4+4w

K [C(w)Γ(−w)]2
[

Γ(−1 − w)

Γ(−w)

]2

(A.27)

IKK
5 = IKK

4 + i4m4+4w
K

[

z̃ℓ
2 + w

4 + 2w
Ẽ(0, 1; z̃ℓ)

−z̃2
ℓ

(

Ẽ(0, 2; z̃ℓ) − 2Ẽ(1, 2; z̃ℓ) + Ẽ(2, 2; z̃ℓ)
)]

(A.28)

TKK
1 =

i

(4π)4
1/m2

K

z̃ℓ − z̃π

∫ ∞

4

ds

s

(

1 − 4

s

)1/2

tKK
1 (s) ≡ i

(4π)4 m2
K

T̃KK
1 (z̃ℓ, z̃π) (A.29)

tKK
1 (s) =

∫ 1

0
dx

1

x
log

(

x2z̃ℓ + s(1 − x)

x2z̃π + s(1 − x)

)

TKK
2 = I

(ℓ)KK
1 +

i

(4π)4

∫ ∞

4

ds

s

(

1 − 4

s

)1/2

tKK
2 (s)

≡ I
(ℓ)KK
1 +

i

(4π)4
T̃KK

2 (z̃ℓ, z̃π) (A.30)

tKK
2 (s) = 1 +

1

z̃ℓ − z̃π

∫ 1

0
dx

(

z̃π +
s

x
− s

x2

)

log

(

x2z̃ℓ + s(1 − x)

x2z̃π + s(1 − x)

)
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The finite loop contributions can all be expressed in terms logarithms and combinations

of Ẽn(x) and the following functions:

R̃n(x) =
Ẽn(x)

x
(A.31)

T ππ(x) = T̃ ππ
2 (x) − 4 T̃ ππ

1 (x) (A.32)

TKK(x, y) = T̃KK
2 (x, y) − 4 T̃KK

1 (x, y) . (A.33)

A.4 Standard form of two-loop integrals

A generic two-loop contribution can be cast in the following standard form (C(w) =

1/(4π)2+w):

I2−loops = [C(w)Γ(−w)]2 m4w x(d) (A.34)

x(d) = x0 + x1 w + x2 w2 + O(w3) , (A.35)

with m = mπ or m = mK . Multiplying and dividing each contribution by (µc)4w [14], with

log c = −1

2
(log 4π − γE + 1) (A.36)

and performing the expansion around d = 4, one finds:

I2−loops =
(µc)4w

(4π)4

[

R(2)

w2
+

R(1)

w
+ F + O(w)

]

(A.37)

R(2) = x0 (A.38)

R(1) = x1 + 2x0

(

log
m2

µ2
+ 1

)

(A.39)

F = x2 + 2x1

(

log
m2

µ2
+ 1

)

+ x0

[

π2

6
+ 2

(

log
m2

µ2
+ 1

)2
]

(A.40)

A.5 Standard form of one-loop integrals

The one loop diagrams with one insertion from the O(p4) effective lagrangian can be cast

in a useful standard form as well. Denoting by L(d) the generic d-dimensional p4 LEC, one

has:

I1−loop = C(w)Γ(−w)m2w L(d) y(d) (A.41)

y(d) = y0 + y1 w + y2 w2 + O(w3) (A.42)

L(d) =
(µc)2w

(4π)2

(

Γ

2w
+ (4π)2Lr(µ)

)

(A.43)

where m = mπ or m = mK and the constant Γ determines the RG running of the renor-

malized coupling Lr(µ). Multiplying and dividing each contribution by (µc)2w [14], and

performing the expansion around d = 4, one finds:

I1−loop =
(µc)4w

(4π)4

[

R̃(2)

w2
+

R̃(1)

w
+ F̃ + O(w)

]

(A.44)

– 30 –



J
H
E
P
1
0
(
2
0
0
7
)
0
0
5

R̃(2) = −Γ y0

2
(A.45)

R̃(1) = −(4π)2 Lr(µ) y0 −
Γ (y0 + y1)

2
− Γ y0

2
log

m2

µ2
(A.46)

F̃ = −(4π)2 Lr(µ) (y0 + y1) −
Γ

24

(

(6 + π2)y0 + 12(y1 + y2)
)

−
(

2(4π)2Lr(µ)y0 + (y0 + y1)Γ
)

log
m

µ
− y0Γ

(

log
m

µ

)2

(A.47)

The couplings of interest to us are L9 and L10, whose divergent parts are determined by:

Γ9 =
1

4
Γ10 = −1

4
(A.48)

B. Matching calculation

In this appendix we report the details of our matching calculation. The intermediate steps

of the calculation are:

1. Insert the large-NC form factors of in the convolution representation of eq. (4.3).

2. Reduce the resulting integrals to scalar Passarino-Veltman functions [34]. For these

we follow the convention of Kniehl [35].

3. Expand the full result in powers of mℓ,π/MV , up to order (m/MV )2. This involves

expanding the scalar integrals B0(p
2,m2

1,m
2
2) and C0(. . .) in powers of ratios of the

internal masses. This is trivial for B0, somewhat less trivial for C0. We derived a

representation of C0 as a two dimensional integral (see ref. [36]) and used that as a

starting point for the heavy mass expansion.

4. Subtract the ChPT∞ result from the expanded full result, thus obtaining the coun-

terterm amplitude according to eq. (6.3).

B.1 Reduction to Passarino Veltman functions

We use the conventions of ref. [35] for the Passarino-Veltman functions, namely:

{B0, Bµ, Bµν} (p2,m2
1,m

2
2) =

∫

ddq

iπ2

{1, qµ, qµqν}
[q2 − m2

1 + iǫ][(q + p)2 − m2
2 + iǫ]

(B.1)

and

{C0, Cµ, Cµν} (p2, k2, (p + k)2,m2
1,m

2
2,m

2
3) = (B.2)

−
∫

ddq

iπ2

{1, qµ, qµqν}
[q2 − m2

1 + iǫ][(q + p)2 − m2
2 + iǫ][(q + p + k)2 − m2

3 + iǫ]
,

with

Bµ = pµ B1 (B.3)

Bµν = pµpν B21 − gµν B22 (B.4)

Cµ = pµ C11 + kµ C12 (B.5)

Cµν = pµpν C21 + kµkν C22 + (pµkν + kµpν) C23 − gµνC24 . (B.6)
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For the reduction of vector and tensor integrals to scalar Passarino-Veltman functions we

have used the relations (A.7), (A.8) and (A.9) of ref. [35].

B.1.1 TV1

In the reduction of TV1 we need the following tensor and vector integrals:

∫

ddq

(2π)d
V1(q

2,W 2)

q2 (q2 − 2q · pℓ)
qαqβ = Vℓℓ pα

ℓ pβ
ℓ + Vνν pα

ν pβ
ν + Vνℓ (pα

ν pβ
ℓ + pα

ℓ pβ
ν ) + Vg gαβ (B.7)

∫

ddq

(2π)d
V1(q

2,W 2)

q2 (q2 − 2q · pℓ)
qα = Vπ pα + Vℓ pα

ℓ (B.8)

Using the above definitions the amplitude reads:

TV1 = −ie2T p2

ℓ

[

6Vg + (m2
ℓ − m2

π)
(

Vℓℓ − Vνℓ

)]

(B.9)

Vℓℓ =
i

6(4π)2

[

1

M2
V

(

B21(m
2
ℓ ,M

2
V ,m2

ℓ) − B21(m
2
ℓ , 0,m

2
ℓ )

)

− (1 − κ)C̄21 − κ ¯̄C21

]

(B.10)

Vνℓ =
i

6(4π)2

[

−(1 − κ)C̄23 − κ ¯̄C23

]

(B.11)

Vg =
i

6(4π)2

[

− 1

M2
V

(

B22(m
2
ℓ ,M

2
V ,m2

ℓ ) − B22(m
2
ℓ , 0,m

2
ℓ )

)

+ (1 − κ)C̄24 + κ ¯̄C24

]

, (B.12)

with

κ =
2M2

V − m2
π − cV

M2
V

(B.13)

cV = M4
V

NC

4π2F 2
= −6M4

V V1 (B.14)

C̄ij = Cij(m
2
ℓ , 0,m

2
π, 0,m2

ℓ ,M
2
V ) (B.15)

¯̄Cij = Cij(m
2
ℓ , 0,m

2
π,M2

V ,m2
ℓ ,M

2
V ) . (B.16)

B.1.2 TA1

In the reduction of TA1 we need the following tensor, vector, and scalar integrals:

∫

ddq

(2π)d
A1(q

2,W 2)

q2 (q2−2q · pℓ)
qαqβ = Aℓℓ pα

ℓ pβ
ℓ +Aνν pα

ν pβ
ν +Aνℓ(p

α
ν pβ

ℓ +pα
ℓ pβ

ν )+Ag gαβ (B.17)

∫

ddq

(2π)d
A1(q

2,W 2)

q2 (q2 − 2q · pℓ)
qα = Aν pα

ν + Aℓ pα
ℓ (B.18)

∫

ddq

(2π)d
A1(q

2,W 2)

q2 − 2q · pℓ
= −SA1 (B.19)

∫

ddq

(2π)d
A1(q

2,W 2)

q2 − 2q · pℓ
qα = Eν pα

ν + Eℓ pα
ℓ (B.20)

∫

ddq

(2π)d
A1(q

2,W 2)

q2
qα = Eπ pα (B.21)
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Using the above definitions the amplitude reads:

TA1 = −ie2T p2

ℓ

{

SA1 − Eπ + Aν(m2
π − m2

ℓ)

+(d − 2)

[

Ag − Eℓ +
m2

π + m2
ℓ

2
Aℓℓ +

m2
π − m2

ℓ

2
Aνℓ

]

}

(B.22)

SA1 =
i

(4π)2

[

b1C̃0 + b2 B0(0,m
2
ℓ ,M

2
A) + b3 B0(m

2
ℓ ,M

2
V ,m2

ℓ)
]

(B.23)

Aν =
i

(4π)2

[

b1

M2
V

C̃12 −
(

b1

M2
V

+ b2

)

˜̃C12

]

(B.24)

Aℓℓ =
−i

(4π)2

[

b3

M2
V

(

B21(m
2
ℓ ,M

2
V ,m2

ℓ) − B21(m
2
ℓ , 0,m

2
ℓ )

)

+
b1

M2
V

C̃21 −
(

b1

M2
V

+ b2

)

˜̃C21

]

(B.25)

Aνℓ =
−i

(4π)2

[

b1

M2
V

C̃23 −
(

b1

M2
V

+ b2

)

˜̃C23

]

(B.26)

Ag =
−i

(4π)2

[

− b3

M2
V

(

B22(m
2
ℓ ,M

2
V ,m2

ℓ) − B22(m
2
ℓ , 0,m

2
ℓ )

)

− b1

M2
V

C̃24 +

(

b1

M2
V

+ b2

)

˜̃C24

]

(B.27)

Eℓ =
i

(4π)2

[

b1C̃11 − b2B0(0,m
2
ℓ ,M

2
A) + b3B1(m

2
ℓ ,M

2
V ,m2

ℓ)
]

(B.28)

Eπ =
i

(4π)2

[

− b1

M2
V

B1(m
2
π,M2

V ,M2
A) +

(

b1

M2
V

+ b2

)

B1(m
2
π, 0,M2

A)

]

, (B.29)

with

b1 = M2
V (1 − b2) − M2

A(1 + b3) (B.30)

C̃ij = Cij(m
2
ℓ , 0,m

2
π,M2

V ,m2
ℓ ,M

2
A) (B.31)

˜̃Cij = Cij(m
2
ℓ , 0,m

2
π, 0,m2

ℓ ,M
2
A) . (B.32)

B.1.3 TA2

In the reduction of TA2 we need the following vector and scalar integrals:

∫

ddq

(2π)d
A2(q

2,W 2)

q2 − 2q · pℓ
= SA2 (B.33)

∫

ddq

(2π)d
A2(q

2,W 2)

q2 − 2q · pℓ
qα = Fν pα

ν + Fℓ pα
ℓ (B.34)

∫

ddq

(2π)d
A2(q

2,W 2)

q2
qα = F̃π pα (B.35)
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Using the above definitions the amplitude reads:

TA2 = ie2T p2

ℓ

[

−2SA2 + (2 − d)Fℓ − F̃π

]

(B.36)

SA2 =
i

(4π)2

[

(2 + d2)M
2
AC̃0 − d2 B0(m

2
ℓ ,M

2
V ,m2

ℓ )
]

(B.37)

Fℓ = − i

(4π)2

[

(2 + d2)M
2
AC̃11 − d2B1(m

2
ℓ ,M

2
V ,m2

ℓ)
]

(B.38)

F̃π =
i

(4π)2
M2

A

M2
V

(2 + d2)
[

B1(m
2
π,M2

V ,M2
A) − B1(m

2
π, 0,M2

A)
]

. (B.39)

B.1.4 TFV

The FV -induced amplitude reads:

TFV
= 2

e2

(4π)2
T p2

ℓ

{

(m2
π + m2

ℓ )C0(m
2
ℓ , 0,m

2
π,M2

V ,m2
ℓ ,m

2
π)

+
1

m2
π − m2

ℓ

[

m2
ℓ B0(m

2
π,M2

V ,m2
π) − m2

π B0(m
2
ℓ ,M

2
V ,m2

ℓ)
]

}

. (B.40)

B.2 Expansion of the relevant three-point scalar functions

We use the following representation for the C0 function as a basis for the large mass

expansion:

C0(p
2, k2, (p+k)2,m2

1,m
2
2,m

2
3) =

∫ 1

0
dx

∫ 1−x

0
dy

1

ax2 + by2 + cxy + dx + ey + f
, (B.41)

with

a = (p + k)2

b = p2

c = (p + k)2 + p2 − k2

d = m2
3 − m2

1 − (p + k)2

e = m2
2 − m2

1 − p2

f = m2
1 .

We then find (we give results up to the needed order):

C0(m
2
ℓ , 0,m

2
π,M2

V ,m2
ℓ ,m

2
π) =

1

m2
π − m2

ℓ

1

M2
V

(

m2
π log

M2
V

m2
π

− m2
ℓ log

M2
V

m2
ℓ

)

+ . . . (B.42)

C0(m
2
ℓ , 0,m

2
π, 0,m2

ℓ ,M
2
V ) =

1

M2
V

(

1 + log
M2

V

m2
ℓ

)

+
m2

π + m2
ℓ

4M4
V

(

1 + 2 log
M2

V

m2
ℓ

)

(B.43)

+
m4

π + m2
ℓm

2
π + m4

ℓ

9M6
V

(

1 + 3 log
M2

V

m2
ℓ

)

+
m6

π + m2
ℓm

4
π + m4

ℓm
2
π + m6

ℓ

16M8
V

(

1 + 4 log
M2

V

m2
ℓ

)

+ . . .
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C0(m
2
ℓ , 0,m

2
π,M2

V ,m2
ℓ ,M

2
V ) =

1

M2
V

+
1

M4
V

(

5

4
m2

ℓ +
1

12
m2

π − m2
ℓ log

M2
V

m2
ℓ

)

(B.44)

+
1

M6
V

(

28

9
m4

ℓ −
5

36
m2

πm2
ℓ +

1

90
m4

π − 3m4
ℓ log

M2
V

m2
ℓ

)

+ . . .

C0(m
2
ℓ , 0,m

2
π,M2

V ,m2
ℓ ,M

2
A) =

1

M2
V

1

z2
A−1

log z2
A+

1

M4
V

f (4)
(

z2
A,m2

ℓ ,m
2
π

)

+
1

M6
V

f (6)
(

z2
A,m2

ℓ ,m
2
π

)

+. . . , (B.45)

with zA = MA/MV . The functions f (4,6)(z2
A,m2

ℓ ,m
2
π) have a simple but lengthy expression:

f (4)(z2
A,m2

ℓ ,m
2
π) = −m2

ℓ

z2
A

log
M2

V

m2
ℓ

+

(

−2m2
π + m2

ℓ(−1 + z2
A)

)

2(−1 + z2
A)2

+

(

m2
πz2

A(1 + z2
A) + m2

ℓ(2 − 3z2
A + z4

A)
)

z2
A(−1 + z2

A)3
log zA (B.46)

f (6)(z2
A,m2

ℓ ,m
2
π) = −m4

ℓ(1 + 2z2
A)

z4
A

log
M2

V

m2
ℓ

+
m4

ℓ(3 − 3z2
A + z4

A)

3z4
A(−1 + z2

A)3
log z2

A

+
m2

ℓm
2
π(4 − 5z2

A + z4
A) + m4

π(1 + 4z2
A + z4

A)

3(−1 + z2
A)5

log z2
A

+
m4

ℓ(3 − 15z2
A + 10z4

A)

6z2
A(−1 + z2

A)2
− m4

π(1 + z2
A)

(−1 + z2
A)4

−m2
ℓm

2
π(3 + 2z2

A − 7z4
A + 2z6

A)

6z2
A(−1 + z2

A)4
. (B.47)

B.3 Results

Recalling the definition zA = MA/MV and neglecting as usual the mℓ-independent terms

that drop in Re/µ, we find:

TCT
FV

= T p2

ℓ

α

4π

m2
ℓ

M2
V

2 log
M2

V

µ2
(B.48)

TCT
V1

= T p2

ℓ

α

4π

m2
ℓ

M2
V

[

−4

9
− 19

9
V1 M2

V +
4

3
V1 M2

V log
M2

V

µ2

]

(B.49)

TCT
A1

= T p2

ℓ

α

4π

m2
ℓ

M2
V

[

7

3

(

1 − 1

z2
A

)

log
M2

V

µ2

−37 − 63z2
A + 21z4

A + 5z6
A + 12(7 − 10z2

A + 4z4
A) log zA

18z2
A(−1 + z2

A)2

]

(B.50)

TCT
A2

= T p2

ℓ

α

4π

m2
ℓ

M2
V

[

− 8 log
M2

V

µ2
+

12 − 16z2
A + 4z6

A + 4(12 − 15z2
A + 5z4

A) log zA

3(−1 + z2
A)3

+d2
8 − 14z2

A + 6z4
A + 2(12 − 15z2

A + 5z4
A) log zA

3(−1 + z2
A)3

]

. (B.51)
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Using the input from ref. [27] the second line of TCT
A1

should be replaced by:

37 − 148z2
A + 168z4

A − 52z6
A − 5z8

A + 12(7 − 28z2
A + 27z4

A − 8z6
A) log zA

18z2
A(−1 + z2

A)3
(B.52)

By comparing these expressions with the ChPT ones, one can easily verify that the match-

ing procedure captures in full the single-log renormalization scale dependence, as expected

from the 1/NC expansion.
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